jueves, 31 de julio de 2008

Espectro de RadioFrecuencia

El término espectro de radiofrecuencia, o RF, se aplica a la porción del espectro electromagnético en el que se pueden generar ondas electromagnéticas aplicando corriente alterna a una antena.

El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz. Las ondas electromagnéticas de esta región del espectro se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. La radiofrecuencia se puede dividir en las siguientes bandas del espectro:


A partir de 1 GHz las bandas entran dentro del espectro de las microondas. Por encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser transparente.

Las bandas ELF, SLF, ULF y VLF comparten el espectro de la AF (audiofrecuencia), que se encuentra entre 20 y 20000 Hz aproximadamente. Sin embargo, éstas se tratan de ondas de presión, como el sonido, por lo que se desplazan a la velocidad del sonido sobre un medio material. Mientras que las ondas de radiofrecuencia, al ser ondas electromagnéticas, se desplazan a la velocidad de la luz y sin necesidad de un medio material.

Los conectores eléctricos diseñados para trabajar con frecuencias de radio se conocen como conectores RF. RF también es el nombre del conector estándar de audio/video, también conocido como BNC (BayoNet Connector).

Microondas Terrestres

MICROONDAS
1.RADIOENLACE

Un radioenlace terrestre o microondas terrestre provee conectividad entre dos sitios (estaciones terrenas) en línea de vista (Line-of-Sight, LOS) usando equipo de radio con frecuencias de portadora por encima de 1 GHz. La forma de onda emitida puede ser analógica (convencionalmente en FM) o digital.

Las microondas son ondas electromagnéticas cuyas frecuencias se encuentran dentro del espectro de las super altas frecuencias, SHF.

2.MODULACION EN MICROONDAS

Los generadores de microondas son generadores críticos en cuanto a la tensión y la corriente de funcionamiento.

Uno de los medios es no actuar sobre el generador o amplificador pero si utilizar un dispositivo diodo pin en la guía de salida, modulada directamente la amplitud de la onda. Otro medio es utilizar un desfasador de ferrita y modular la onda en fase. En este caso es fácil obtener modulación en frecuencia a través del siguiente proceso:

En una primera etapa, se modula en FM una portadora de baja frecuencia, por ejemplo 70 Mhz. En una segunda etapa, esta portadora modulada es mezclada con la portadora principal en frecuencia de Ghz, por ejemplo 10 Ghz.

Un filtro de frecuencias deja pasar la frecuencia suma, 10070 Mhz con sus bandas laterales de 3 Mhz y por lo tanto la banda pasante será de 10067 a 10073 Mhz que es la señal final de microondas.

En el receptor se hace la mezcla de esta señal con el oscilador local de 10 Ghz seguido de un filtro que aprovecha la frecuencia de diferencia 70 Mhz la cual es amplificada y después detectada por las técnicas usuales en FM.


3.RANGO DE FRECUENCIAS

Las principales frecuencias utilizadas en microondas se encuentran alrededor de los 12 GHz, 18 y 23 Ghz, las cuales son capaces de conectar dos localidades entre 1 y 15 millas de distancia una de la otra. El equipo de microondas que opera entre 2 y 6 Ghz puede transmitir a distancias entre 20 y 30 millas.


4. ESTRUCTURA GENERAL DE UN RADIOENLACE POR MICROONDAS

EQUIPOS Un radioenlace esta constituido por equipos terminales y repetidores intermedios. La función de los repetidores es salvar la falta de visibilidad impuesta por la curvatura terrestre y conseguir así enlaces superiores al horizonte óptico. La distancia entre repetidores se llama Vano.

Los repetidores pueden ser:

-Activos

-Pasivos

En los repetidores pasivos o reflectores.

-No hay ganancia

-Se limitan a cambiar la dirección del haz radielectrónico.


5. ANTENAS DE MICROONDAS

La antena utilizada generalmente en las microondas es la de tipo parabólico. El tamaño típico es de un diámetro de unos 3 metros. La antena es fijada rígidamente, y transmite un haz estrecho que debe estar perfectamente enfocado hacia la antena receptora.

Estas antenas de microondas se deben ubicar a una altura considerable sobre el nivel del suelo, con el fin de conseguir mayores separaciones posibles entre ellas y poder superar posibles obstáculos. Sin obstáculos intermedios la distancia máxima entre antenas es de aproximadamente 7,14 km, claro está que esta distancia se puede extender, si se aprovecha la característica de curvatura de la tierra, por medio de la cual las microondas se desvían o refractan en la atmósfera terrestre.

Por ejemplo dos antenas de microondas situadas a una altura de 100 m pueden separarse una distancia total de 82 km, esto se da bajo ciertas condiciones, como terreno y topografía. Es por ello que esta distancia puede variar de acuerdo a las condiciones que se manejen.

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos.

La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de potencia dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.

REFLECTOR PARABÓLICO: se construye de fibra de vidrio o aluminio. El caso de fibra de vidrio se construye con un laminado reforzado con resina poliester; la superficie se metaliza con Zinc.

EFICIENCIA : en una antena se ve reducida la ganancia por las siguientes causas:

• Spill over: la potencia incidente es irradiada en todas las direcciones por el borde de la parábola (rendimiento 90%).

• El iluminador tiene un diagrama de emisión que abarca más que la superficie de la antena (rendimiento de 70%).

• El iluminador absorbe parte de la energía reflejada en la parábola por que obstruye el camino (rendimiento de 95%).

• La rugosidad del reflector produce una diferencia de fase en las ondas reflejadas (rendimiento de 93%).

• Se genera una diferencia de fase cuando el iluminador no está exactamente en el foco de la parábola (rend. 98%).

• Como el reflector no es un conductor ideal parte de la energía penetra en el material y es absorbida (rendimiento 99%).


6. CONSIDERACIONES EN UN RADIOENLACE

El clima y el terreno son los mayores factores a considerar antes de instalar un sistema de microondas.

En resumen, en un radioenlace se dan pérdidas por:

* Espacio libre

* Difracción

* Reflexión

* Refracción

* Absorción

* Desvanecimientos

* Desajustes de ángulos

* Lluvias

* Gases y vapores

* Difracción por zonas de Fresnel (atenuación por obstáculo);

* Desvanecimiento por múltiple trayectoria (formación de ductos);

GUIA DE ONDA

Guía de onda
En electromagnetismo y en telecomunicación, una guía de onda es cualquier estructura física que guía ondas electromagnéticas.

Las guías de onda electromagnéticas se analizan resolviendo las ecuaciones de Maxwell. Estas ecuaciones tienen soluciones múltiples, o modos, que son los autofunciones del sistema de ecuaciones. Cada modo es pues caracterizado por un autovalor, que corresponde a la velocidad de propagación axial de la onda en la guía.
Los modos de propagación dependen de la longitud de onda, de la polarización y de las dimensiones de la guía. El modo longitudinal de una guía de onda es un tipo particular de onda estacionaria formado por ondas confinadas en la cavidad. Los modos transversales se clasifican en tipos distintos:
modo TE (Transversal eléctrico), la componente del campo eléctrico en la dirección de propagación es nula.
modo TM (Transversal magnético), la componente del campo magnético en la dirección de propagación es nula.
modo TEM (Transversal electromagnético), la componente tanto del campo eléctrico como del magnético en la dirección de propagación es nula.
modo híbrido, son los que sí tienen componente en la dirección de propagación tanto en el campo eléctrico como en el magnético.
En guías de onda rectangulares el modo fundamental es el TE1,0 y en guías de onda circulares es el TE1,1.
El ancho de banda de una guía de onda viene limitado por la aparición de modos superiores. En una guía rectangular, sería el TE0,1. Para aumentar dicho ancho de banda se utilizan otros tipos de guía, como la llamada "Double Ridge", con sección en forma de "H".

Aplicaciones
Las guías de onda son adecuadas para transmitir señales debido a su bajas pérdidas. Por ello, se usan en microondas, a pesar de su ancho de banda limitado y volumen, mayor que el de líneas impresas o coaxiales para la misma frecuencia.
También se realizan distintos dispositivos en guías de onda, como acopladores direccionales, filtros, circuladores y otros.
Actualmente, son especialmente importantes, y lo serán más en el futuro, las guías de onda dieléctricas trabajando a frecuencias de la luz visible e infrarroja, habitualmente llamadas fibra óptica, útiles para transportar información de banda ancha, sustituyendo a los cables coaxiales y enlaces de microondas en las redes telefónicas y, en general, las redes de datos.

FIBRA OPTICA

La fibra óptica.
es un conductor de ondas en forma de filamento, generalmente de vidrio, aunque también puede ser de materiales plásticos. La fibra óptica es capaz de dirigir la luz a lo largo de su longitud usando la reflexión total interna. Normalmente la luz es emitida por un láser o un LED.
Las fibras son ampliamente utilizadas en
telecomunicaciones, ya que permiten enviar gran cantidad de datos a gran velocidad, mayor que las comunicaciones de radio y cable. También se utilizan para redes locales. Son el medio de transmisión inmune a las interferencias por excelencia. Tienen un costo elevado.
La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.
Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.
CARACTERISTICAS.
La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.
Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto
índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.
Así, en el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.
Ventajas
Su ancho de banda es muy grande (teóricamente de hasta 1 THz), mediante técnicas de multiplexación por división de frecuencias (WDM/DWDM), que permiten enviar hasta 100 haces de luz (cada uno con una longitud de onda diferente) a una velocidad de 10 Gb/s cada uno por una misma fibra, se llegan a obtener velocidades de transmisión totales de 10 Tb/s.
Es inmune totalmente a las interferencias electromagnéticas.

Desventajas
A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros
medios de transmisión, siendo las más relevantes las siguientes:
La alta fragilidad de las fibras.
Necesidad de usar transmisores y receptores más caros
Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de rotura del cable
No puede transmitir electricidad para alimentar
repetidores intermedios
La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica
La fibra óptica convencional no puede transmitir potencias elevadas.
[1]
No existen memorias ópticas

Tipos
Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.

Fibra multimodo
Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.
Su distancia máxima es de 2
km y usan diodos láser de baja intensidad.
El núcleo de una fibra multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de una fibra multimodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de menor precisión.
Dependiendo el tipo de índice de refracción del núcleo, tenemos dos tipos de fibra multimodo:
Índice escalonado: en este tipo de fibra, el núcleo tiene un índice de refracción constante en toda la sección cilíndrica, tiene alta dispersión modal.
Índice gradual: mientras en este tipo, el índice de refracción no es constante, tiene menor dispersión modal y el núcleo se constituye de distintos materiales.

Fibra monomodo
Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 100 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).

Tipos de conectores
Estos elementos se encargan de conectar las líneas de fibra a un elemento, ya puede ser un transmisor o un receptor. Los tipos de conectores disponibles son muy variados, entre los que podemos encontrar se hallan los siguientes:
FC, que se usa en la transmisión de datos y en las telecomunicaciones.
FDDI, se usa para redes de fibra óptica.
LC y MT-Array que se utilizan en transmisiones de alta densidad de datos.
SC y SC-Dúplex se utilizan para la transmisión de datos.
ST se usa en redes de edificios y en sistemas de seguridad.

Anexos del cable de par trenzado

El cable de par trenzado
Es una forma de conexión en la que dos conductores son entrelazados para cancelar las interferencias electromagnéticas (IEM) de fuentes externas y la diafonía de los cables adyacentes.
El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, el cual determina el acoplamiento magnético en la señal, es reducido. En la operación de balanceado de pares, los dos cables suelen llevar señales iguales y opuestas (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se cancela mutuamente en esta sustracción debido a que ambos cables están expuestos a IEM similares.
La tasa de trenzado, usualmente definida en vueltas por
metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto mayor es el número de vueltas, mayor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de IEM.

ESTRUCTURA DEL CABLE.
Este tipo de cable, está formado por el conductor interno el cual está aislado por una capa de polietileno coloreado. Debajo de este aislante existe otra capa de aislante de polietileno la cual evita la corrosión del cable debido a que tiene una sustancia antioxidante.
Normalmente este cable se utiliza por pares o grupos de pares, no por unidades, conocido como cable multipar. Para mejorar la resistencia del grupo se trenzan los cables del multipar.
Los colores del aislante están estandarizados, y son los siguientes: Naranja/ Blanco-Naranja, Verde/ Blanco-Verde, Azul/ Blanco-Azul, Marrón/Blanco-Marrón.
Cuando ya están fabricados los cables unitariamente y aislados, se trenzan según el color que tenga cada uno. Los pares que se van formando se unen y forman subgrupos, estos se unen en grupos, los grupos dan lugar a superunidades, y la unión de superunidades forma el cable.


TIPOS DE CABLE.
Hay varios tipos de cables y cada uno posee unas ventajas y unos inconvenientes, esto quiere decir que ninguno de estos tipos de cables es mejor que otro. Sobre todo se diferencian en su ancho de banda, en como les afectan las interferencias electromagnéticas,…
1.- Apantallado (
STP/ Shielded Twisted Pair): Este tipo de cable se caracteriza porque cada par va recubierto por una malla conductora, la cual es mucho más protectora y de mucha mas calidad que la utilizada en el UTP. La protección de este cable ante perturbaciones es mucho mayor a la que presenta el UTP. También es más costoso. Sus desventajas, son que es un cable caro, es recio/fuerte. Este tipo de cable se suele utilizar en instalaciones de procesos de datos.
2.- No apantallado (
UTP/ Unshielded twisted pair): Es el cable más simple. En comparación con el apantallado este, es más barato , además de ser fácil de doblar y pesar poco. Las desventajas de este tipo de cable, es que cuando se somete a altas temperaturas no es tan resistente a las interferencias del medio ambiente.
Los servicios como: Red de Area Local
ISO 802.3 (Ethernet) y ISO 802.5 (Token Ring), telefonía digital,… son algunos de los que puede soportar este tipo de cable.
2.1.- Categorías:
Hay varias categorías dentro de los cables
UTP, las cuales se diferencian en su atenuación, impedancia y capacidad de línea:
Categoría 1: (cable
UTP tradicional) Alcanza como máximo una velocidad de 100 Kbps. Se utiliza en redes telefónicas.
Categoría 2: Alcanza una velocidad de transimisión de 4 Mbps . Tiene cuatro pares trenzados de hilo de cobre.
Categoría 3: 16 Mbps puede alcanzar como máximo en la transmisión. Tiene un ancho de banda de 16 MHz.
Categoría 4: Velocidad de transmisión de hasta 20 Mbps, con un ancho de banda de 20 MHz.
Categoría 5: Velocidad de hasta 100 Mbps, con un ancho de banda de 100 MHz. Se utiliza en las comunicaciones de tipo LAN. La atenuación de este cable depende de la velocidad.
Velocidad de 4 Mbps --
Atenuación de 13 dB
Velocidad de 10 Mbps --
Atenuación de 20 dB
Velocidad de 16 Mbps --
Atenuación de 25 dB
Velocidad de 100 Mbps --
Atenuación de 67 dB
Categoría 5e: Igual que la anterior pero mejorada, ya que produce menos
atenuación. Puede alcanzar velocidad de transmision de 1Gbs con electronica especial.
Categoría 6: Tiene un
ancho de banda de 250 MHz. Puede alcanzar velocidad de transmision de 1Gbs
Categoría 6A: Tiene un
ancho de banda de 500 MHz. Puede alcanzar velocidad de transmision de 10Gbs
Categoría 7: Esta categoría esta aprobada para los elementos que conforman la clase F en el estandar internacional ISO 11801. Tiene un ancho de banda de 600 MHz. Puede alcanzar velocidades de transmision superiores a 10Gbs
3.- Con pantalla global (
FTP) Tambien llamado FUTP : Su precio es intermedio entre el del UTP y el del STP. En este tipo de cable sus pares aunque no están apantallados, tienen una pantalla global (formada por una cinta de aluminio) que provoca una mejora en la protección contra interferencias externas.
Se suele utilizar para aplicaciones que se van a someter a una elevada
interferencia electromagnética externa, ya que este cable tiene un gran aislamiento de la señal.
Una de las ventajas que tiene el
FTP es que puede ser configurado en topologías diferentes, como son la de estrella y la de bus, además es de fácil instalación.
También tiene algunas desventajas como son las siguientes: muestra gran sensibilidad al
ruido y las grandes velocidades de transmisión no las soporta.

SISTEMAS DE CONEXIONES DE TELECOMUNICACIONES

Par trenzado (UT - UTP)
El cableado de par trenzado está reemplazando al cableado coaxial. Se utiliza más comúnmente porque es más fácil de utilizar y más flexible que el cable coaxial. Como resultado de ésto, la mayoría del equipo de red de Ethernet de hoy en día, tiene puertos para cables de par trenzado.
Una red pequeña de par trenzado se crea normalmente mediante la conexión de un conmutador directamente a PCs


El cable de par trenzado tiene conectores fáciles de utilizar, que se insertan simplemente en los puertos de los dispositivos y del equipo de red.
Si uno de los cables de par trenzado se daña o se desconecta, solamente quedará interrumpida esa conexión específica, y el resto de la red continúa funcionando normalmente. Efectuar cambios en la red, tales como añadir PCs, es fácil, y se puede hacer sin que afecte a otros dispositivos en la red.
par trenzado (TP)Es un par de cables delgados que se utilizan generalmente en los teléfonos y en las redes de ordenadores. Los cables están trenzados uno alrededor del otro para minimizar las interferencias provenientes de otros cables. Los dos tipos de cables de par trenzado más importantes son los pares trenzados blindados (STP) y los pares trenzados no blindados (UTP). UTP es popular porque es más delgado y no ocupa mucho espacio, pero STP ofrece más protección contra interferencias electromagnéticas.

Cable con conectores RJ-45Es un conector estándar que se utiliza para conectar las redes Ethernet. "RJ" son las siglas de las palabras "registered jack" o clavija registrada. Se usa una pinza especial para su armado llamada "grimpiadora" y utilizamos cable con pares trenzados UTP categoria 5


CABLE COAXIAL. El cable coaxial consiste de un núcleo sólido de cobre rodeado por un aislante, una combinación de blindaje y alambre de tierra y alguna otra cubierta protectora. En el pasado del cable coaxial tenía rasgos de transmisión superiores (10 Mbs) que el cable par trenzado, pero ahora las técnicas de transmisión para el par trenzado igualan o superan los rasgos de transmisión del cable coaxial.
Sin embargo, el cable coaxial puede conectar dispositivos a través de distancias más largas que el cable par trenzado. Mientras que el cable coaxial es más común para redes del tipo ETHERNET y ARCENET, el par trenzado y la fibra óptica son más comúnmente utilizados en estos días. Los nuevos estándares para cable estructurado llaman al cable par trenzado capaz de manejar velocidades de transmisión de 100Mbps (10 veces más que el cable coaxial). El cable coaxial no interfiere con señales externas y puede transportar de forma eficiente señales en un gran ancho de banda con menor atenuación que un cable normal. Pero tiene una limitación fundamental: atenúa las altas frecuencias la perdida de frecuencia, expresada en decibelios por unidad de longitud, crece proporcional a la raíz cuadrada de la frecuencia de la señal). Por lo tanto podemos decir que el coaxial tiene una limitación para transportar señales de alta frecuencia en largas distancias ya que a partir de una cierta distancia el ruido superará a la señal. Esto obliga a usar amplificadores, que introducen ruido y aumenta el costo de la red. Se ha venido usando ampliamente desde la aparición de la red ethernet. Consiste, básicamente, en un hilo de cobre rodeado por una recubrimiento de aislante que a su vez esta recubierta por una malla de alambre . Todo el conjunto está envuelto por un recubrimiento aislante exterior.


Se suele suministrar en distintos diámetros, a mayor diámetro mayor capacidad de datos, pero también mayor costo. Los conectores resultan más caros y por tanto la terminación de los cables hace que los costos de instalación sean superiores. El cable coaxial tiene la ventaja de ser muy resistente a interferencias, comparado con el par trenzado, y por lo tanto, permite mayores distancias entre dispositivos. Entre ambos conductores existe un aislamiento de polietileno compacto o espumoso, denominado dieléctrico. Finalmente, y de forma externa, existe una capa aislante compuesta por PVC o Policloruro de Vinilo. El material dieléctrico define la de forma importante la capacidad del cable coaxial en cuanto a velocidad de transmisión por el mismo se refiere. Siempre haciendo referencia a la velocidad de la luz, la figura 2 muestra la velocidad que las señales pueden alcanzar en su interior. Lo interesante del cable coaxial es su amplia difusión en diferentes tipos de redes de transmisión de datos, no solamente en computación, sino también en telefonía y especialmente en televisión por cable. Existen distintos tipos de cables coaxiales, entre los que destacan los siguientes: Cable estándar ethernet, de tipo especial conforme a las normas IEEE 802.3 10 base5. Se denomina también cable coaxial “grueso”, y tiene una impedancia de 50 ohmios. El conector que utiliza es del tipo “N”. Cable coaxial ethernet delgado, denominado también RG-58, con una impedancia de 50 ohmios. El conector utilizado es del tipo “BNC”. Cable coaxial del tipo RG-62, con una impedancia de 93 ohmios. Es el cable estándar utilizado en la gama de equipos 3270 de IBM, y también en la red. ARCNET. Usa un conector BNC. Cable coaxial del tipo RG-59, con una impedancia de 75 ohmios. Este tipo de cable lo utiliza en versión doble, la red WANGNET, y dispone de conectores DNC y TNC. Cable coaxial grueso, es el bable más utilizado en LAN en un principio y que aún hoy sigue usándose en determinadas circunstancias. Cable coaxial delgado, este surgió como alternativa al cable anterior, al ser barato y fácil de instalar, sin embargo sus propiedades de transmisión ( perdidas en empalmes y conexiones, distancia máxima de enlace, etc ).

jueves, 24 de julio de 2008

Particiones Primarias

Particiones primarias
En los equipos
PC, originales de IBM, estas particiones tradicionalmente usan una estructura llamada Tabla de Particiones, que apunta al final del registro de arranque maestro. Esta tabla, que no puede contener más de 4 registros de particiones (también llamados partition descriptors), especifica para cada una su principio, final y tamaño en los diferentes modos de direccionamiento, así también como un solo número, llamado partition type, y un marcador que indica si la partición está activa o no (sólo puede haber una partición activa a la vez). El marcador se usa durante el arranque; después de que el BIOS cargue el registro de arranque maestro en la memoria y lo ejecute, el MBR de DOS comprueba la tabla de partición a su final y localiza la partición activa. Entonces carga el sector de arranque de esta partición en memoria y la ejecuta. A diferencia del registro de arranque maestro, generalmente independiente del sistema operativo, el sector de arranque está instalado junto con el sistema operativo y sabe cómo cargar el sistema ubicado en ese disco en particular.
Notar que mientras la presencia de un marcador activo se estandariza, éste normalmente no lo utiliza cualquier programa, aunque sí el gestor de arranque para que no esté obligado a cargar la partición que se marcó como activa. Algunos gestores usan esto para arrancar sistemas operativos desde particiones no activas. Por ejemplo, los gestores
LILO, GRUB (muy comunes en el sistema Linux) y XOSL no buscan por encima de la tabla de partición en total; simplemente carga una segunda etapa (que puede ser contenida en el resto del cilindro 0 ó en el sistema de archivos). Después de cargar la segunda etapa se puede usar para cargar el sector de arranque desde cualquiera de las particiones del disco (así habilitando al usuario cargar el sistema desde éste), o si el gestor conoce cómo localizar el kernel (núcleo) del sistema operativo en una de las particiones y cargarlo (para propósitos de recuperación, puede permitir al usuario especificar opciones de kernel adicionales).